篇首语:本文由编程笔记#小编为大家整理,主要介绍了深度学习框架介绍相关的知识,希望对你有一定的参考价值。
在开始深度学习项目之前,选择一个合适的框架是非常重要的,因为选择一个合适的框架能起到事半功倍的作用。研究者们使用各种不同的框架来达到他们的研究目的,侧面印证出深度学习领域百花齐放。全世界最为流行的深度学习框架有以下,欢迎补充。
飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨已凝聚超过265万开发者,服务企业10万家,基于飞桨开源深度学习平台产生了34万个模型 。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。
Baidu
C++/Python
https://github.com/PaddlePaddle/Paddle/
飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。
IDC发布的2021年上半年深度学习框架平台市场份额报告显示,百度跃居中国深度学习平台市场综合份额第一。百度飞桨汇聚开发者数量达370万,服务 14 万企事业单位,产生了42.5 万个模型。 飞桨助力开发者快速实现AI想法,高效上线AI业务,帮助越来越多的行业完成AI赋能,实现产业智能化升级。
TensorFlo是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。
Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究。
TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API)。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码
Google 开源的Tensorflow是一款使用C++语言开发的开源数学计算软件,使用数据流图(Data Flow Graph)的形式进行计算。图中的节点代表数学运算,而图中的线条表示多维数据数组(tensor)之间的交互。Tensorflow灵活的架构可以部署在一个或多个CPU、GPU的台式及服务器中,或者使用单一的API应用在移动设备中。Tensorflow最初是由研究人员和Google Brain 团队针对机器学习和深度神经网络进行研究而开发,开源之后几乎可以在各个领域适用。
Tensorflow是全世界使用人数最多、社区最为庞大的一个框架,因为Google公司出品,所以维护与更新比较频繁,并且有着Python和C++的接口,教程也非常完善,同时很多论文复现的第一个版本都是基于Tensorflow写的,所以是深度学习界框架默认的老大。
C++/Python/Java/R 等
https://github.com/tensorflow/tensorflow
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vwzqzDBM-1650724164143)(2Tensorflow.png)]
谷歌的TensorFlow可以说是当今最受欢迎的开源深度学习框架,可用于各类深度学习相关的任务中。TensorFlow = Tensor + Flow,Tensor就是张量,代表N维数组;Flow即流,代表基于数据流图的计算。
TensorFlow是目前深度学习的主流框架,其主要特性如下所述。
学习地址:
和Tensorflow名气一样大的是深度学习框架Caffe,由加州大学伯克利的Phd贾扬清开发,全称是Convolutional Architecture for Fast Feature Embedding,是一个清晰而高效的开源深度学习框架,由伯克利视觉中心(Berkeley Vision and Learning Center,BVLC)进行维护。
从它的名字就可以看出其对于卷积网络的支持特别好,同时也是用C++写的,提供的C++接口,也提供了matlab接口和python接口。
Caffe之所以流行,是因为之前很多ImageNet比赛里面使用的网络都是用Caffe写的,所以如果你想使用这些比赛的网络模型就只能使用Caffe,这也就导致了很多人直接转到Caffe这个框架下面。
Caffe的缺点是不够灵活,同时内存占用高,Caffe的升级版本Caffe2已经开源了,修复了一些问题,同时工程水平得到了进一步提高。
BVLC
C++/Python/Matlab
https://github.com/BVLC/caffe
Caffe是由AI科学家贾扬清在加州大学伯克利分校读博期间主导开发的,是以C++/CUDA代码为主的早期深度学习框架之一,比TensorFlow、MXNet、PyTorch等都要早。Caffe需要进行编译安装,支持命令行、Python和Matlab接口,单机多卡、多机多卡等都可以很方便使用。
Caffe的基本特性如下。
同时,Caffe的缺点也比较明显,主要包括如下几点。
虽然Caffe已经提供了Matlab和Python接口,但目前不支持R语言。caffeR为Caffe提供了一系列封装功能,允许用户在R语言上运行Caffe,包括数据预处理和网络设置,以及监控和评估训练过程。该包还没有CRAN版本,感兴趣的读者可以在GitHub找到caffeR包的安装及使用的相关内容。
https://github.com/cnaumzik/caf
Theano于2008年诞生于蒙特利尔理工学院,其派生出了大量的深度学习Python软件包,最著名的包括Blocks和Keras。Theano的核心是一个数学表达式的编译器,它知道如何获取你的结构,并使之成为一个使用numpy、高效本地库的高效代码,如BLAS和本地代码(C++)在CPU或GPU上尽可能快地运行。它是为深度学习中处理大型神经网络算法所需的计算而专门设计,是这类库的首创之一(发展始于2007年),被认为是深度学习研究和开发的行业标准。
但是开发Theano的研究人员大多去了Google参与Tensorflow的开发,所以,某种程度来讲Tensorflow就像Theano的孩子。
UdeM
Python
https://github.com/Theano/Theano
Theano是在BSD许可证下发布的一个开源项目,诞生于加拿大魁北克蒙特利尔大学的LISA实验室,是用一位希腊数学家的名字命名的。
Theano是一个Python库,可用于定义、优化和计算数学表达式,特别是多维数组(numpy.ndarray)。在解决包含大量数据的问题时,使用Theano可实现比手写C 语言更快的编程速度。 而通过GPU加速,Theano甚至可以比基于CPU计算的C语言快上好几个数量级。
Theano结合了计算机代数系统(Computer Algebra System,CAS)和优化编译器,还可以为多种数学运算生成定制的C语言代码。对于包含重复计算的复杂数学表达式任务,计算速度很重要,因此这种CAS和优化编译器的组合是很有用的。
对于需要将每种不同数学表达式都计算一遍的情况,Theano能够实现编译/解析计算量的最小化,但仍然会给出如自动微分那样的符号特征。
在过去很长一段时间内,Theano是深度学习开发与研究的行业标准。而且由于诞生于学界,Theano最初是为学术研究而设计的, 深度学习领域的许多学者至今仍在使用Theano。
但随着TensorFlow在谷歌的支持下强势崛起,Theano日渐式微,使用的人越来越少。在这个过程中标志性事件是:Theano创始者之一Ian Goodfellow放弃Theano转去谷歌开发TensorFlow了。
2017年9月28日,在Theano 1.0正式版发布前夕,LISA实验室负责人、深度学习三巨头之一的 Yoshua Bengio宣布Theano将停止继续开发:“Theano is Dead.”
尽管Theano正慢慢退出历史舞台,但作为第一个Python深度学习框架,Theano很好地完成了自己的使命,为深度学习研究人员早期拓荒提供了极大的帮助,同时也为之后深度学习框架的开发奠定了基本设计方向:以计算图为框架的核心,采用GPU加速计算。
MXNet的主要作者是李沐,最早就是几个人抱着纯粹对技术和开发的热情做起来的,如今成了亚马逊的官方框架,有着非常好的分布式支持,而且性能特别好,占用显存低,同时其开发的语言接口不仅仅有Python和C++,还有R,Matlab,Scala,Javascript,等等,可以说能够满足使用任何语言的人。
但是MXNet的缺点也很明显,教程不够完善,使用的人不多导致社区不大,同时每年很少有比赛和论文是基于MXNet实现的,这就使得MXNet的推广力度和知名度不高。
DMLC
C++/Python/R等
https://github.com/apache/incubator-mxnet
MXNet框架允许混合符号和命令式编程,以最大限度地提高效率和生产力。MXNet的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。其图形优化层使符号执行更快,内存效率更高。
MXNet的基本特性如下。
ONNX(Open Neural Network eXchange,开放神经网络交换)项目由微软、亚马逊、Facebook和IBM等公司共同开发,旨在寻找呈现开放格式的深度学习模型。ONNX简化了在人工智能不同工作方式之间传递模型的过程,具有各种深度学习框架的优点。
ONNX的基本特性如下。
onnx-r包提供了R与ONNX的API接口。感兴趣的读者可以通过以下网址进行学习。
Torch是一个有大量机器学习算法支持的科学计算框架,其诞生已有十年之久,但是真正起势得益于Facebook开源了大量Torch的深度学习模块和扩展。Torch的特点在于特别灵活,但是另一个特殊之处是采用了编程语言Lua,在深度学习大部分以Python为编程语言的大环境之下,一个以Lua为编程语言的框架有着更多的劣势,这一项小众的语言增加了学习使用Torch这个框架的成本。
PyTorch的前身便是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络,这是很多主流深度学习框架比如Tensorflow等都不支持的。
PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。除了Facebook外,它已经被Twitter、CMU和Salesforce等机构采用。
C/C++/Python
https://github.com/pytorch/pytorch
PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow、Keras等框架,但自发布之日起,其受到的关注度就在不断上升,目前在GitHub上的热度已经超过Theano、Caffe、MXNet等框架。
PyTroch主要提供以下两种核心功能:
PyTorch的主要优点如下。
来自微软公司的CNTK工具包的效率,“比我们所见过的都要疯狂”。 这部分归功于CNTK可借助图形处理单元(GPU)的能力,微软自称是唯一公开“可扩展GPU”功能的公司。(从单机上的1个、延伸至超算上的多个) 在与该公司的网络化GPU系统(称之为Azure GPU Lab)匹配之后,它将能够训练深度神经网络来识别语音,让Cortana虚拟助理的速度达到以前的十倍。 去年4月的时候,CNTK就已经面向研究人员开放,只是当时的开源授权限制颇多。不过现在,它已经彻底开放了,而深度学习的初创者们将最为受益。
微软认知工具包 ( https://cntk.ai) 是一个统一的深度学习工具包,它通过有向图将神经网络描述为一系列计算步骤。在这个有向图中,叶节点表示输入值或网络参数,而其他节点表示对其输入的矩阵运算。CNTK 允许用户轻松实现和组合流行的模型类型,例如前馈 DNN、卷积网络 (CNN) 和循环网络 (RNN/LSTM)。它通过跨多个 GPU 和服务器的自动微分和并行化实现随机梯度下降(SGD,误差反向传播)学习。CNTK 自 2015 年 4 月起在开源许可下可用。我们希望社区能够利用 CNTK 通过交换开源工作代码更快地分享想法。
Microsoft
C++/Python/C#/.NET/Java/R
https://github.com/Microsoft/CNTK
CNTK(Microsoft Cognitive Toolkit)是微软开源的深度学习工具包,它通过有向图将神经网络描述为一系列计算步骤。在有向图中,叶节点表示输入值或网络参数,其他节点表示其输入上的矩阵运算。
CNTK允许用户非常轻松地实现和组合流行的模型,包括前馈神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN、LSTM)。与目前大部分框架一样,CNTK实现了自动求导,利用随机梯度下降方法进行优化。
CNTK的基本特性如下。
微软开发的CNTK-R包提供了R与CNTK的API接口。感兴趣的读者可以通过以下网址进行学习。
Python/R
https://github.com/keras-team/keras
深度学习框架的出现降低了入门的门槛,你不需要从复杂的神经网络开始编代码,你可以根据需要选择已有的模型,通过训练得到模型参数,你也可以在已有模型的基础上增加自己的layer,或者是在顶端选择自己需要的分类器和优化算法(比如常用的梯度下降法)。当然也正因如此,没有什么框架是完美的,就像一套积木里可能没有你需要的那一种积木,所以不同的框架适用的领域不完全一致。 总的来说深度学习框架提供了一些列的深度学习的组件(对于通用的算法,里面会有实现),当需要使用新的算法的时候就需要用户自己去定义,然后调用深度学习框架的函数接口使用用户自定义的新算法。